Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-4-[(2,6-Dimethylphenoxy)methyl]cyclohexanecarboxylic acid

Chun-Hong Zhang, Zi-Cheng Li, Hang Song and Wen-Cai Huang*

Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China Correspondence e-mail: hwc@scu.edu.cn

Received 28 October 2008; accepted 30 October 2008

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.066; wR factor = 0.196; data-to-parameter ratio = 15.5.

The title compound, $C_{16}H_{22}O_3$, is a useful intermediate in the synthesis of poly(amidoamine) dendrimers. The cyclohexane ring adopts a chair conformation. In the crystal structure, molecules are linked into centrosymmetric dimers by pairs of $O-H\cdots O$ hydrogen bonds.

Related literature

For general background on poly(amidoamine) dendrimers, see: Ahmed *et al.* (2001); Grabchev *et al.* (2003); Wang *et al.* (2004). For related structures, see: Bucourt & Hainaut (1965); Dunitz & Strickler (1966); Luger *et al.* (1972).

Experimental

Crystal data	
$C_{16}H_{22}O_3$	a = 7.162 (3) Å
$M_r = 262.34$	b = 7.680 (4) Å
Triclinic, P1	c = 14.451 (4) Å

$\alpha = 95.26 \ (4)^{\circ}$	
$\beta = 98.35 \ (4)^{\circ}$	
$\gamma = 106.44 \ (3)^{\circ}$	
V = 746.9 (6) Å ³	
Z = 2	

Data collection

Enraf–Nonius CAD-4	1461 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.013$
Absorption correction: none	3 standard reflections
2886 measured reflections	every 250 reflections
2715 independent reflections	intensity decay: 2.3%
•	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	175 parameters
$wR(F^2) = 0.196$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
2715 reflections	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2-H2\cdots O3^i$	0.82	1.86	2.658 (3)	166
Symmetry code: (i)	-x + 3, -y - 1	-7 + 2.		

Data collection: *DIFRAC* (Gabe & White, 1993); cell refinement: *DIFRAC*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2698).

References

- Ahmed, S. M., Budd, P. M., McKeown, N. B., Evans, K. P., Beaumont, G. L., Donaldson, C. & Brennan, C. M. (2001). *Polymer*, 42, 889–896.
- Bucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr. 5, 1366-1378.
- Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290-291.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.
- Grabchev, I., Chovelon, J. M., Bojinov, V. & Ivanova, G. (2003). *Tetrahedron*, **59**, 9591–9598.
- Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706-710.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, B.-B., Zhang, X., Jia, X.-R., Luo, Y.-F., Sun, Z., Yang, L., Ji, Y. & Wei, Y. (2004). Polymer, 45, 8395–8402.

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.60 \times 0.52 \times 0.42 \text{ mm}$

T = 292 (2) K

supplementary materials

Acta Cryst. (2008). E64, o2263 [doi:10.1107/S1600536808035502]

trans-4-[(2,6-Dimethylphenoxy)methyl]cyclohexanecarboxylic acid

C.-H. Zhang, Z.-C. Li, H. Song and W.-C. Huang

Comment

Poly(amidoamine) [PAMAM] dendrimers have attracted much interest for their symmetry, high degree of branching and high density of terminal functional groups, and with different structures they could be used in different fields. Various modifications of periphery of PAMAM dendrimers to change its physical or chemical properties have been reported recently (Wang *et al.*, 2004; Grabchev *et al.*, 2003; Ahmed *et al.*, 2001). To change the lipophilicity of PAMAM dendrimers and provide a new type of linker with special stereostructure, a series of cyclohexanic acid derivatives were synthesized. In our synthetic work the title compound was obtained and here we report its crystal structure.

The cyclohexane ring of the title compound (Fig. 1) adopts a chair conformation. The average C—C bond length of the cyclohexane ring is 1.517 (4) Å, which is close to that of *trans*-1,4-cyclohexane dicarboxylic acid (1.523 (3) Å, Luger *et al.*, 1972). The mean endocyclic angle of the cyclohexane is 111.1 (3)°, which is close to that observed for cyclohexane rings (111.1°, Bucourt & Hainaut, 1965; 111.4 (4)°, Dunitz & Strickler, 1966; Luger *et al.*, 1972).

In the crystal structure, the molecules are linked into centrosymmetric dimers by O-H…O hydrogen bonds (Table 1).

Experimental

Methyl *trans*-4-(tosylmethyl)cyclohexanecarboxylate (3.26 g, 10 mmol), 2,6-dimethylphenol (3.66 g, 30 mmol) and potassium phosphate (10.6 g, 50 mmol) were suspended in dry DMF (20 ml) and heated at 368 K for 8 h, and then water (30 ml) and toluene (30 ml) were added. After agitation, the water layer separated was washed twice with toluene and the organic layer combined was washed with water and then dried with sodium sulfate. After filtration and distillation under vaccum, the crude product obtained was further purified by column chromatography to give pure methyl ester. The ester was then hydrolyzed in a ethanol (15 ml)–1 N NaOH (15 ml) solution for 5 h at 313 K. After cooling and acidification with hydrochloride, the white solid precipitated was collected. Colourless crystals were obtained by slow evaporation in chloroform at room temperature.

Refinement

H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93–0.98 Å) and refined using a riding model, with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. A rotating group model was used for methyl and hydroxyl groups.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

trans-4-[(2,6-Dimethylphenoxy)methyl]cyclohexanecarboxylic acid

Crystal data	
C ₁₆ H ₂₂ O ₃	Z = 2
$M_r = 262.34$	$F_{000} = 284$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.167 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.162 (3) Å	Cell parameters from 26 reflections
b = 7.680 (4) Å	$\theta = 4.3 - 7.4^{\circ}$
c = 14.451 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 95.26 \ (4)^{\circ}$	T = 292 (2) K
$\beta = 98.35 \ (4)^{\circ}$	Block, colourless
$\gamma = 106.44 \ (3)^{\circ}$	$0.60\times 0.52\times 0.42~mm$
V = 746.9 (6) Å ³	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.013$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.4^{\circ}$
T = 292(2) K	$h = -8 \rightarrow 8$
$\omega/2\theta$ scans	$k = -5 \rightarrow 9$
Absorption correction: none	$l = -17 \rightarrow 17$
2886 measured reflections	3 standard reflections
2715 independent reflections	every 250 reflections
1461 reflections with $I > 2\sigma(I)$	intensity decay: 2.3%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.196$	$w = 1/[\sigma^2(F_o^2) + (0.0902P)^2 + 0.0605P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.16	$(\Delta/\sigma)_{\rm max} = 0.001$
2715 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
175 parameters	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

sup-2

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.8686 (2)	0.1188 (2)	0.70598 (13)	0.0678 (5)
O2	1.2419 (3)	-0.5645 (3)	0.96803 (18)	0.0922 (7)
H2	1.3381	-0.5780	1.0015	0.138*
O3	1.4736 (3)	-0.3312 (3)	0.93470 (18)	0.0964 (8)
C1	0.7116 (4)	0.1817 (3)	0.6701 (2)	0.0628 (7)
C2	0.5908 (4)	0.2148 (4)	0.7308 (2)	0.0769 (8)
C3	0.4398 (5)	0.2823 (5)	0.6941 (4)	0.1122 (14)
H3	0.3518	0.3017	0.7324	0.135*
C4	0.4162 (6)	0.3209 (5)	0.6047 (5)	0.1232 (17)
H4	0.3148	0.3684	0.5828	0.148*
C5	0.5403 (6)	0.2907 (4)	0.5465 (3)	0.1052 (13)
Н5	0.5235	0.3191	0.4853	0.126*
C6	0.6931 (4)	0.2174 (4)	0.5772 (2)	0.0728 (8)
C7	0.8312 (6)	0.1882 (5)	0.5141 (2)	0.1050 (11)
H7A	0.9250	0.1368	0.5466	0.157*
H7B	0.9000	0.3034	0.4965	0.157*
H7C	0.7576	0.1056	0.4584	0.157*
C8	0.6272 (6)	0.1818 (5)	0.8314 (3)	0.1143 (13)
H8A	0.6137	0.0542	0.8333	0.171*
H8B	0.5326	0.2158	0.8642	0.171*
H8C	0.7585	0.2541	0.8612	0.171*
C9	0.8238 (4)	-0.0765 (3)	0.6916 (2)	0.0710 (8)
H9A	0.8080	-0.1196	0.6249	0.085*
H9B	0.7005	-0.1320	0.7125	0.085*
C10	0.9881 (4)	-0.1320 (3)	0.74612 (18)	0.0610 (7)
H10	1.1123	-0.0654	0.7276	0.073*
C11	0.9560 (4)	-0.3349 (4)	0.7197 (2)	0.0764 (8)
H11A	0.9530	-0.3606	0.6524	0.092*
H11B	0.8287	-0.4032	0.7329	0.092*
C12	1.1171 (4)	-0.3994 (4)	0.7733 (2)	0.0746 (8)
H12A	1.2426	-0.3407	0.7551	0.089*
H12B	1.0871	-0.5308	0.7564	0.089*
C13	1.1352 (4)	-0.3548 (4)	0.8800 (2)	0.0712 (8)

supplementary materials

H13	1.0096	-0.4209	0.8974	0.085*
C14	1.1699 (5)	-0.1513 (4)	0.9070 (2)	0.0838 (9)
H14A	1.2980	-0.0839	0.8942	0.101*
H14B	1.1718	-0.1259	0.9742	0.101*
C15	1.0103 (5)	-0.0858 (4)	0.8526 (2)	0.0789 (8)
H15A	1.0425	0.0460	0.8689	0.095*
H15B	0.8849	-0.1419	0.8716	0.095*
C16	1.2952 (4)	-0.4194 (4)	0.9309 (2)	0.0679 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0677 (12)	0.0521 (10)	0.0835 (12)	0.0263 (9)	-0.0042 (9)	0.0107 (8)
O2	0.0857 (14)	0.0824 (15)	0.1224 (19)	0.0393 (12)	0.0165 (13)	0.0434 (13)
03	0.0695 (14)	0.0986 (16)	0.136 (2)	0.0373 (12)	0.0181 (12)	0.0551 (14)
C1	0.0573 (15)	0.0486 (14)	0.0804 (18)	0.0191 (12)	-0.0007 (13)	0.0088 (12)
C2	0.0742 (19)	0.0565 (17)	0.104 (2)	0.0234 (15)	0.0221 (17)	0.0078 (15)
C3	0.083 (3)	0.071 (2)	0.193 (5)	0.0338 (19)	0.041 (3)	0.013 (3)
C4	0.074 (3)	0.079 (3)	0.216 (6)	0.037 (2)	-0.010 (3)	0.029(3)
C5	0.103 (3)	0.074 (2)	0.122 (3)	0.024 (2)	-0.038 (2)	0.027 (2)
C6	0.0754 (19)	0.0592 (17)	0.0762 (19)	0.0179 (14)	-0.0078 (15)	0.0131 (14)
C7	0.130 (3)	0.105 (3)	0.085 (2)	0.038 (2)	0.024 (2)	0.0224 (19)
C8	0.154 (3)	0.100 (3)	0.102 (3)	0.040 (2)	0.062 (3)	0.012 (2)
C9	0.0734 (18)	0.0548 (16)	0.0841 (19)	0.0268 (13)	-0.0026 (14)	0.0088 (13)
C10	0.0652 (16)	0.0495 (14)	0.0686 (16)	0.0217 (12)	0.0039 (12)	0.0087 (12)
C11	0.0809 (19)	0.0603 (17)	0.090 (2)	0.0345 (14)	-0.0016 (15)	0.0030 (14)
C12	0.0780 (19)	0.0602 (17)	0.090 (2)	0.0348 (14)	0.0035 (15)	0.0051 (14)
C13	0.0676 (17)	0.0716 (18)	0.090 (2)	0.0353 (14)	0.0230 (14)	0.0304 (15)
C14	0.112 (2)	0.081 (2)	0.0727 (19)	0.0588 (19)	0.0024 (16)	0.0080 (15)
C15	0.098 (2)	0.0747 (19)	0.079 (2)	0.0534 (17)	0.0075 (15)	0.0093 (15)
C16	0.0757 (19)	0.0644 (17)	0.0816 (19)	0.0397 (15)	0.0238 (15)	0.0268 (15)

Geometric parameters (Å, °)

	a - /a:
01C9 1.431 (3) C9C10 1.5	05 (3)
O2—C16 1.266 (3) C9—H9A 0.9	7
O2—H2 0.82 C9—H9B 0.9	7
O3—C16 1.256 (3) C10—C11 1.5	13 (4)
C1—C2 1.373 (4) C10—C15 1.5	22 (4)
C1—C6 1.390 (4) C10—H10 0.9	8
C2—C3 1.386 (5) C11—C12 1.5	21 (4)
C2—C8 1.496 (5) C11—H11A 0.9	7
C3—C4 1.350 (6) C11—H11B 0.9	7
C3—H3 0.93 C12—C13 1.5	26 (4)
C4—C5 1.359 (6) C12—H12A 0.9	7
C4—H4 0.93 C12—H12B 0.9	7
C5—C6 1.402 (5) C13—C16 1.4	98 (4)
C5—H5 0.93 C13—C14 1.5	16 (4)

C6—C7	1.487 (5)	С13—Н13	().98
С7—Н7А	0.96	C14—C15	1	1.521 (4)
С7—Н7В	0.96	C14—H14A	().97
С7—Н7С	0.96	C14—H14B	().97
C8—H8A	0.96	C15—H15A	().97
C8—H8B	0.96	C15—H15B	().97
C1—O1—C9	113.91 (18)	C9—C10—C15	1	113.2 (2)
С16—О2—Н2	109.5	C11-C10-C15	1	110.1 (2)
C2—C1—C6	123.7 (3)	C9-C10-H10	1	107.8
C2C1O1	117.7 (3)	C11-C10-H10	1	107.8
C6-C1-O1	118.5 (3)	С15—С10—Н10	1	107.8
C1—C2—C3	116.5 (3)	C10-C11-C12	1	112.2 (2)
C1—C2—C8	120.4 (3)	C10-C11-H11A	1	109.2
C3—C2—C8	123.1 (3)	C12—C11—H11A	1	109.2
C4—C3—C2	122.2 (4)	C10-C11-H11B	1	109.2
С4—С3—Н3	118.9	C12-C11-H11B	1	109.2
С2—С3—Н3	118.9	H11A—C11—H11B	1	107.9
C3—C4—C5	120.2 (4)	C11—C12—C13	1	111.6 (2)
C3—C4—H4	119.9	C11—C12—H12A	1	109.3
С5—С4—Н4	119.9	C13—C12—H12A	1	109.3
C4—C5—C6	121.2 (4)	C11—C12—H12B	1	109.3
С4—С5—Н5	119.4	C13—C12—H12B	1	109.3
С6—С5—Н5	119.4	H12A—C12—H12B	1	108.0
C1—C6—C5	116.2 (3)	C16—C13—C14	1	112.1 (2)
C1—C6—C7	122.8 (3)	C16—C13—C12	1	110.4 (2)
C5—C6—C7	121.0 (3)	C14—C13—C12	1	110.0 (2)
С6—С7—Н7А	109.5	С16—С13—Н13	1	108.1
С6—С7—Н7В	109.5	С14—С13—Н13	1	108.1
H7A—C7—H7B	109.5	С12—С13—Н13	1	108.1
С6—С7—Н7С	109.5	C13—C14—C15	1	111.7 (2)
H7A—C7—H7C	109.5	C13—C14—H14A	1	109.3
Н7В—С7—Н7С	109.5	C15—C14—H14A	1	109.3
С2—С8—Н8А	109.5	C13—C14—H14B	1	109.3
C2—C8—H8B	109.5	C15—C14—H14B	1	109.3
H8A—C8—H8B	109.5	H14A—C14—H14B	1	107.9
С2—С8—Н8С	109.5	C14—C15—C10	1	112.6 (2)
H8A—C8—H8C	109.5	C14—C15—H15A	1	109.1
H8B—C8—H8C	109.5	C10-C15-H15A	1	109.1
O1—C9—C10	109.9 (2)	C14—C15—H15B	1	109.1
О1—С9—Н9А	109.7	C10-C15-H15B	1	109.1
С10—С9—Н9А	109.7	H15A—C15—H15B	1	107.8
O1—C9—H9B	109.7	O3—C16—O2	1	122.8 (2)
С10—С9—Н9В	109.7	O3—C16—C13	1	119.9 (2)
Н9А—С9—Н9В	108.2	O2—C16—C13	1	117.3 (3)
C9—C10—C11	109.9 (2)			
Hydrogen-bond geometry (Å, °)				
D—H…A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A

supplementary materials

O2—H2···O3 ⁱ	0.82	1.86	2.658 (3)	166
Symmetry codes: (i) $-x+3, -y-1, -z+2$.				

Fig. 1

